3GPP TSG-T2 #15

Cancun, Mexico, November 26-30, 2001

	CR-Form-v5

	CHANGE REQUEST

	

	(

	23.040
	CR
	
	(

rev
	
	(

Current version:
	5.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Vector Graphics Drawings for Messaging

	
	

	Source:
(

	Motorola, Lexicus Division

	
	

	Work item code:
(

	TEI5
	
	Date: (

	November 26, 2001

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	This proposal provides a simple method for representing vector graphics. This proposal allows for a high rate of compression for vector drawings (lines, rectangles, filled curves), handwritten drawings (digital ink), and simple cartoon animations. This document represents a proposal based on the iSKETCH vector data representation format.

	
	

	Summary of change:
(

	A new EMS object type is proposed for adding Scalable Vector Graphics to the EMS 5 release.

	
	

	Consequences if
(

not approved:
	Bitmaps are very large for transmission and can cause large bills and inconvenient delays. In addition, bitmaps do not scale well for display on different screen sizes. Vector graphics allows for simple ways of sending scalable content to small screens.

	
	

	Clauses affected:
(

	2.3.10.6, 9.2.3.24.10.1.11, Annex E

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	None

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

3.10.5
vCard and vCalendar

A message may contain vCard and vCalendar objects as specified in [36][37]. These may be transmitted in a compressed form.

3.10.6 Scalable Vector Graphics Drawing

A Scalable Vector Drawing allows a simple compressed representation of a vector image to be presented on a phone. This image supports animation, and colour, and can be resized to fit most screens on the fly with minimal loss in fidelity.

9.2.3.24
TP‑User Data (TP‑UD)

The length of the TP-User-Data field is defined in the PDU’s of the SM-TL (see subclause 9.2.2).

The TP‑User‑Data field may comprise just the short message itself or a Header in addition to the short message depending upon the setting of TP‑UDHI.

Where the TP‑UDHI value is set to 0 the TP‑User‑Data field comprises the short message only, where the user data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit (UCS2 [24]) data.

Where the TP‑UDHI value is set to 1 the first octets of the TP‑User‑Data field contains a Header in the following order starting at the first octet of the TP‑User‑Data field.

Irrespective of whether any part of the User Data Header is ignored or discarded, the MS shall always store the entire TPDU exactly as received.

FIELD

LENGTH

Length of User Data Header

1 octet

Information‑Element‑Identifier "A"

1 octet

Length of Information‑Element "A"

1 octet

Information‑Element "A" Data

1 to "n" octets

Information‑Element‑Identifier "B"

1 octet

Length of Information‑Element "B"

1 octet

Information‑Element "B" Data

1 to "n" octets

Information‑Element‑Identifier "n"

1 octet

Length of Information‑Element "n"

1 octet

Information‑Element "n" Data

1 to "n" octets

The diagram below shows the layout of the TP-User-Data-Length and the TP-User-Data for uncompressed GSM 7 bit default alphabet data. The UDHL field is the first octet of the TP-User-Data content of the Short Message.

[image: image1.wmf]U

D

L

U

D

H

L

I

E

I

a

I

E

D

a

I

E

I

b

.

.

.

.

.

.

.

.

.

I

E

I

n

I

E

D

L

n

I

E

D

n

F

i

l

l

b

i

t

s

S

M

(

7

b

i

t

d

a

t

a

)

S

e

p

t

e

t

B

o

u

n

d

a

r

y

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

T

o

t

a

l

n

u

m

b

e

r

o

f

S

e

p

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

O

c

t

e

t

s

O

c

t

e

t

s

I

E

I

D

L

a

Figure 9.2.3.24 (a)

The diagram below shows the layout of the TP-User-Data-Length and the TP-User-Data for uncompressed 8 bit data or uncompressed UCS2 data. The UDHL field is the first octet of the TP-User-Data content of the Short Message.

[image: image2.wmf]U

D

L

U

D

H

L

I

E

I

a

I

E

D

a

I

E

I

b

.

.

.

.

.

.

.

.

.

I

E

I

n

I

E

D

L

n

I

E

D

n

O

c

t

e

t

B

o

u

n

d

a

r

y

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

O

c

t

e

t

s

O

c

t

e

t

s

I

E

I

D

L

a

S

M

(

8

b

i

t

d

a

t

a

o

r

U

C

S

-

2

d

a

t

a

)

Figure 9.2.3.24 (b)

The diagram below shows the layout of the TP-User-Data-Length and the TP-User-Data for compressed GSM 7 bit default alphabet data, compressed 8 bit data or compressed UCS2 data. The UDHL field is the first octet of the TP‑User-Data content of the Short Message.

[image: image3.wmf]U

D

L

U

D

H

L

I

E

I

a

I

E

D

a

I

E

I

b

.

.

.

.

.

.

.

.

.

I

E

I

n

I

E

D

L

n

I

E

D

n

O

c

t

e

t

B

o

u

n

d

a

r

y

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

T

o

t

a

l

n

u

m

b

e

r

o

f

O

c

t

e

t

s

L

e

n

g

t

h

I

n

d

i

c

a

t

o

r

O

c

t

e

t

s

O

c

t

e

t

s

I

E

I

D

L

a

C

o

m

p

r

e

s

s

e

d

S

M

(

o

c

t

e

t

s

)

Figure 9.2.3.24 (c)

The definition of the TP‑User‑Data‑Length field which immediately precedes the "Length of User Data Header" is unchanged and shall therefore be the total length of the TP‑User‑Data field including the Header, if present. (see 9.2.3.16)

The "Length‑of‑Information‑Element" fields shall be the integer representation of the number of octets within its associated "Information‑Element‑Data" field which follows and shall not include itself in its count value.

The "Length‑of‑User‑Data‑Header" field shall be the integer representation of the number of octets within the "User‑Data‑Header" information fields which follow and shall not include itself in its count or any fill bits which may be present (see text below).

Information Elements may appear in any order and need not necessarily follow the order used in the present document.

In the case where there are no multiple instances of any Information Element type: If Information Elements are duplicated (either with the same or different content), within one single SM or within one segment of a concatenated message then the contents of the last occurrence of the Information Element shall be used.

In the case where there are multiple instances of any Information Element type: If certain types of Information Elements are duplicated (either with the same or different content) within one single SM or within one segment of a concatenated message and there is a contradiction in meaning (e.g. more than one Special Message Indication for voice) or there is a contradiction of Information Element types (e.g. an 8bit port address and a 16bit port address), then the contents of the last occurrence of the Information Element shall be used. Other types of Information Elements may occur more than once when there is additional information of the same type to be conveyed. The individual specifications for each Information Element will state if multiple use is permitted and in such a case will also indicate the maximum number of occurrences within one User Data Header.

If the length of the User Data Header overall is such that there appear to be too few or too many octets in the final Information Element then the whole User Data Header shall be ignored.

If any reserved values are received within the content of any Information Element then that part of the Information Element shall be ignored.

The Information Element Identifier octet shall be coded as follows:

	VALUE (hex)
	MEANING

	00
	Concatenated short messages, 8-bit reference number

	01
	Special SMS Message Indication

	02
	Reserved

	03
	Value not used to avoid misinterpretation as <LF> character

	04
	Application port addressing scheme, 8 bit address

	05
	Application port addressing scheme, 16 bit address

	06
	SMSC Control Parameters

	07
	UDH Source Indicator

	08
	Concatenated short message, 16-bit reference number

	09
	Wireless Control Message Protocol

	0A
	Text Formatting

	0B
	Predefined Sound

	0C
	User Defined Sound (iMelody max 128 bytes)

	0D
	Predefined Animation

	0E
	Large Animation (16*16 times 4 = 32*4 =128 bytes)

	0F
	Small Animation (8*8 times 4 = 8*4 =32 bytes)

	10
	Large Picture (32*32 = 128 bytes)

	11
	Small Picture (16*16 = 32 bytes)

	12
	Variable Picture

	13
	User prompt indicator

	14
	Extended Object

	15
	Reused Extended Object

	16
	Compression Control

	17
	Object Distribution Indicator

	18
	Vector Graphics Drawing

	 19-1F
	Reserved for future EMS features (see subclause 3.10)

	20
	RFC 822 E-Mail Header

	21
	Hyperlink format element

	22-6F
	Reserved for future use

	70 – 7F
	(U)SIM Toolkit Security Headers

	80 – 9F
	SME to SME specific use

	A0 – BF
	Reserved for future use

	C0 – DF
	SC specific use

	E0 – FF
	Reserved for future use

A receiving entity shall ignore (i.e. skip over and commence processing at the next information element) any information element where the IEI is Reserved or not supported. The receiving entity calculates the start of the next information element by looking at the length of the current information element and skipping that number of octets.

9.2.3.24.10.1.10
User Prompt Indicator

With the User Prompt Indicator a sending entity is able to indicate to the receiving entity, that the following object is intended to be handled at the time of reception, e.g. by means of user interaction. The object may be a picture, an animation, a User Defined Sound or a combination of these.

For example the User Prompt Indicator may be used when sending an operators logo to the ME that should be displayed instead of the operators name in standby mode.

When receiving the object the user shall be prompted to accept or discard the object. After this user interaction the SM may be discarded.

The User Prompt Indicator IE shall immediately precede the corresponding object IE(s).

If a User Prompt Indicator IE is not followed by a corresponding object IE it shall be discarded.

The Information‑Element‑Data octet(s) shall be coded as follows.

Octet 1
Number of corresponding objects

This octet shall contain the number of corresponding objects as an integer value.

Where Octet 1 indicates that the User Prompt Indicator refers to more than one object, the ME should check the validity of the objects referenced for stitching together. The objects should be considered for stitching if they are either Images (Small, Large, Variable Pictures) or User Defined Sounds, and all of the objects referenced by the User Prompt Indicator IE are of the same type. Animations, Text formatting and pre-defined sound IE's are not suitable for stitching.

User defined sounds may be stitched by concatenating the data contained within each User Defined Sound IE into a single melody object, this may be achieved by ignoring the iMelody header and footer information of the second and subsequent User Defined Sound IE's referenced from the User Prompt Indicator.

Images may be joined along their vertical edges, to form a single "wide" image, the resulting image will have a width equal to the sum of the widths of all the images defined in the User Prompt Indicator.

9.2.3.24.10.1.11
Character Size Line Drawing

The Character Size Line Drawing object as defined by IEI 18 is structured as follows:

Octet 1
position indicating in the SM data the instant the picture shall be displayed in the SM data

Octet 2..n
Scalable Vector Graphics drawing bit stream

The unused bits in the last octet will be filled with 0

The detailed data format and attributes of a vector drawing are defined in Annex F.9.2.3.24.10.1.11
Extended Object

The Extended Object allows an extended code range for format types. The Extended Object may extend across segment boundaries of a concatenated short message. Octets 1 through 7 of the first Extended Object IE shall be contained in a single segment. A single segment may include one or more Extended Object IEs.

If multiple SMs are concatenated and at least one of them contains an Extended Object information element, then concatenation of the SMs shall be done using the 'Concatenated short messages, 16-bit reference number', verses the 'Concatenated short messages, 8-bit reference number' information element. The re-assembly of the Extended Object segments shall be done according to the sequence number of the associated Concatenation IE.

One or more Extended Objects may be compressed using a compression algorithm as indicated in the Compression Control IE (see section 9.2.3.24.10.1.13).

An SME implementing the Extended Object IE shall be capable of interpreting an uncompressed concatenated message composed of at least min_eo_msg short messages which have been received. According to current content provider requirements and handset manufacturer constraints, variable min_eo_msg is set to 8.

The first Extended Object IE of an Extended Object contains a reference number, length, control data, type and position. The subsequent Extended Object IEs shall only contain Extended Object data as illustrated in Figure 9.2.24.10.11.

The IE length is variable.

Octet 1
Extended Object reference number
a modulo 256 counter indicating the reference number for the Extended Object. Two different Extended Objects in a single concatenated message shall have different reference numbers.

Octet 2..3
Extended Object length in number of octets (integer representation) as shown in Figure 9.2.3.24.10.1.11.

Octet 4
Control data

Bit 0

Object distribution

0 Object may be forwarded

1 Object shall not be forwarded by SMS

Bit 1

User Prompt Indicator

0
Object shall be handled normally
1
Object shall be handled as a User Prompt (see 9.2.3.24.10.1.10)

Bit 2..7
reserved

Any reserved values shall be set to 0.

Octet 5
Extended Object Type
This octet indicates the format of the Extended Object from the table below.
If the value is reserved or if the associated format is not supported then the receiving entity shall ignore the Extend Object.

	Format Type
	Format Description

	0x00
	Predefined sound as defined in annex E.

	0x01
	iMelody as defined in annex E.

	0x02
	Black and white bitmap as defined in annex E.

	0x03
	2-bit greyscale bitmap as defined in annex E.

	0x04
	6-bit colour bitmap as defined in annex E.

	0x05
	Predefined animation as defined in annex E.

	0x06
	Black and white bitmap animation as defined in annex E.

	0x07
	2-bit greyscale bitmap animation as defined in annex E.

	0x08
	6-bit colour bitmap animation as defined in annex E.

	0x09
	vCard as defined in annex E.

	0x0A
	vCalendar as defined in annex E.

	0X0B
	Vector Graphic Drawing as defined in Annex E.

	0x0C.. 0xFE
	Reserved

	0xFF
	Data Format Delivery Request as defined in annex E.

Octet 6..7
Extended Object Position (integer representation)
The Extended Object Position indicates the absolute character position within the message text after which the object shall be played or displayed. The absolute character position relates to the entire text within the concatenated message, the first character is numbered character 1.

If more than one Extended Object is located at the same position then they may be played or displayed in sequence or simultaneously.

Octet 8..n
Extended Object Data
This sequence of octets is structured as illustrated in the figure below and defined annex E. This figure illustrates the construction of a number of SMs containing a large Extended Object which crosses a SM boundary and is encoded into 2 SM TPDUs. The figure illustrates only the User Data field of the SM (TPDUs). For a description of concatenation of SM refer to Figures 9.2.3.24 (a, b and c)

[image: image4.wmf]Control

Byte

Reference

 Data

Length

Positioning

 Information

Extended Object Data

1

2,3

4

5

6,7

Type

Identifier

Extended Object Header Information

Extended Object Data

Octet Number

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Extended Object Header

Extended Object Data

Concatenation Info

IEI

E.O.*

IEIDL

Continuation of Extended Object Data

TPDU 2

TPDU 1

8.....n

* E.O. means Extended Object

UDHL

Figure 9.2.3.24.10.1.11

Annex E (normative):
Extended Object Format Type

E.12
Data Format Delivery Request

This Data Format Delivery Request is an optional feature used by an SME to indicate which Extended Object data formats, listed in section 9.2.3.24.10.1.11, it is requesting for delivery. This Data Format Delivery Request may be included by an SME in a MO SM containing other EMS related data, or in a MO SM independently. Processing of this data format is optional in a MT short message.

The information in this data format represents an extensible bit field with the first bit being mapped to the first Extended Object (EO) data format defined in the table in section 9.2.3.24.10.1.11.

Octet 8

Bit 0: If set to 1 indicates support for EO data format 00

Bit 1: If set to 1 indicates support for EO data format 01

Bit 2: If set to 1 indicates support for EO data format 02

……

……

Octet n

Bit 0: If set indicates support for EO data format ((n – 8) * 8)

Bit 1: If set indicates support for EO data format ((n – 8) + 1

Bit 2: If set indicates support for EO data format ((n – 8) + 2

…….

Any unused bits in the last octet shall be set to zero.

E.13
Vector Drawing

The scalable vector graphic object as integrated in the Extended Object IE is structured as follows:

Octet 8..n
line drawing data bit stream

The unused bits in the last octet will be filled with 0

The drawing size on screen is scalable to different implementations.

Detailed data format and attributes of Line Drawing are defined in Annex F

Annex F (Informative):

This section provides a complete data format for transmitting vector graphics. The format is the iSKETCH vector format developed at Lexicus and offered as a royalty free solution.

Binary Scalable Vector Graphics Data Format

An iSKETCH™ vector graphics message is a binary-packed bit stream, composed of a header, codec parameters, and iSKETCH objects.

<iSKETCH msg>::=<iSKETCH header><codec parameters>{<iSKETCH object>}

Bit Packing

Each data item (e.g., the coordinates of a point, the number of points of a polygon) is represented by an efficient number of bits. The Encoder will go through the whole iSKETCH message to determine the number of bits for different data items.

For example, the X coordinate 320 can be encoded in iSKETCH with 10 bits if it needs to be encoded as a signed value. If 320 is considered an unsigned value, only 9 bits are sufficient.

Relative Coordinates

The coordinates of all poly-objects are converted to system relative before being encoded. The first point of a poly-object will be unchanged. Starting from the second point, the stored coordinate value is the difference from previous point. For example, a 3 point poly-line (30,40), (50,20) and (35,25), will be encoded as (30,40),(20,-20) and (-15, 5). The Decoder will convert the relative coordinate back to normal system.

The Encoder uses different numbers of bits to encode the first point of a poly-object compared to the rest of the points. The number of bits needed to encode the first point of a poly-object is the same as the number of bits needed to encode the center of a rectangle, the center of an ellipse, a flood fill point, and the center and translation of a display group object. The numbers of bits necessary to encode points after the first point of poly-objects are the same as those necessary to encode the width and height of a rectangle, and an ellipse. Different numbers of bits are used for X and Y.

There are two widths of bit fields used to encode the points after the first one, Level_1 and Level_2. The actual values of Level_1 and Level_2 vary, depending on the particular iSKETCH drawing being processed. Level 1 is smaller than level 2. Each poly-object will utilize 2 bits to indicate which Level will be used for the X and Y coordinates. For example, the Level encoding string “01” indicates Level_1 is used for X, and Level_2 is used for Y.

Second Color Palette

In 6 bits color mode and 8 bits W3C palette color mode, if an iSKETCH drawing has numerous objects, but only uses a few colors, those colors can be encoded by a smaller number of bits, by using a second color palette. For example, if there are 20 objects which use color in a drawing, but only 4 different colors are used. Those four colors can be encoded with only 2 bits, instead of 6 or 8 bits. The four used colors will be encoded in the codec parameters as the second palette. The color will be indexed as colors 0, 1, 2, and 3.

Default Value Handling

Some data items have default values known by both the Encoder and the Decoder. The Encoder will emit 0 if the value is equal to the default value. Otherwise, the Encoder will emit 1, then encode the data item after that. Some default values are fixed. Some are dynamic.

For example, the default value for Translate_X is 0. The default value for Scale_X is 256, which is 1.0 in 8.8 format. The default value for Scale_Y is the same as for Scale_X, since most of scaling is done for both X and Y.

The ISKETCH Header

Introduction

The iSKETCH header contains information such as:

· the iSKETCH version number

· the size of the iSKETCH message in bytes

· the color mode

· the frame timing mode

· the frame time interval

· number of objects in the iSKETCH message

The iSKETCH header may, optionally, contain information such as:

· the width and height of the drawing

· dot pitch

· title, author and copyright

· modification time

iSKETCH Data Format

<iSKETCH header>::=<version><iSKETCH size><color_mode><frame timing><iSKETCH width><iSKETCH height><dot pitch X><dot pitch Y><header text encode format><author><title><copyright><modification time><number of objects>

<color_mode>::=’unsigned_2_bit_integer’

; 0 means 1 bit black and white

; 1 for 2 bit greyscale

; 2 for 256 color W3C palette

; 3 for 6 bit RGB color

<frame_timing>::=<frame_timing_type>[<frame_interval>]

<frame_timing_type>::=’unsigned_1_bit_integer’

; 0 means infinite delay between frames, 1 for fixed time interval between frames

<frame_interval>::=’unsigned_16_bit_integer’

; time interval between two frames, in the units of 10 ms, exist if the frame timing type is 1 (fixed timing)

<iSKETCH_width>::=<width_use_default_flag>[<width_of_iSKETCH>]

<width_use_default_flag>::=’unsigned_1_bit_integer’

; 0 means use the default which is 0, 1 means that the width follows

<width_of_iSKETCH>::=’unsigned_16_bit_integer’

; width of iSKETCH drawing

<iSKETCH_height>::=<height_use_default_flag>[<height>]

<height_use_default_flag>::=’unsigned_1_bit_integer’

; 0 means use the default which is 0, 1 means that the height follows

<height_of_iSKETCH>::=’unsigned_16_bit_integer’

; height of iSKETCH drawing

<dot_pitch_X>::=<dot_pitch_X_use_default_flag>[<X_dot_pitch>]

<dot_pitch_X_use_default_flag>::=’unsigned_1_bit_integer’

; 0 means use default which is 0, 1 means that dot pitch X follows

<X_dot_pitch_>::=’unsigned_16_bit_integer’

; dot pitch X of iSKETCH drawing

<dot_pitch_Y>::=<dot_pitch_Y_use_default_flag>[<Y_dot_pitch>]

<dot_pitch_Y_use_default_flag>::=’unsigned_1_bit_integer’

; 0 means use default which is 0, 1 means that dot pitch Y follows

<Y_dot_pitch_>::=’unsigned_16_bit_integer’

; dot pitch Y of iSKETCH drawing

<header_text_encode_format>::=’unsigned_1_bit_integer’

; 0 means Unicode, 1 for ASCII

<author>::=<author_use_default>[<author_string>]

<author_use_default>::=’unsigned_1_bit_integer’

; 0 means use default which is no author info, 1 means author string follows

<author_string>::=’unsigned_8_bit_or_16_bit_string_terminated_by_0x00_or_0x0000’

<title>::=<title_use_default>[<title_string>]

<title_use_default>::=’unsigned_1_bit_integer’

; 0 means use default which is no title info, 1 for title string is followed

<title_string>::=’unsigned_8_bit_or_16_bit_string_terminated_by_0x00_or_0x0000’

<copyright>::=<copyright_use_default>[<copyright_string>]

<copyright_use_default>::=’unsigned_1_bit_integer’

; 0 means use default which is no copyright info, 1 means copyright string follows

<copyright_string>::=’unsigned_8_bit_or_16_bit_string_terminated_by_0x00_or_0x0000’

<modification_time>::=<has_modification_time>[<year><month><day><hour><minute><second>]

<has_modification_time>::=’unsigned_1_bit_integer’

; 0 means no modification time, 1 means the modification time follows

<year>::=’signed_16_bit_integer’

<month>::=’unsigned_8_bit_integer’

; range 1-12

<day>::=’unsigned_8_bit_integer’

; range 1-31
<hour>::=’unsigned_8_bit_integer’

; range 0-23

<minute>::=’unsigned_8_bit_integer’

; range 0-59

<second>
::=’unsigned_8_bit_integer’

; range 0-59

<number_of_objects>::=’unsigned_16_bit_integer’

; number of objects in the encoded iSKETCH message

Codec Parameters

Introduction

Codec parameters are values the Encoder inserted into the iSKETCH bit stream that indicate how the iSKETCH message is encoded. The Decoder needs those parameters to know how to decode an iSKETCH message. Codec parameters are emitted after the iSKETCH header and before the iSKETCH objects. The Encoder should check through out the whole iSKETCH message to determine best codec parameters that can make encoded message smallest while keep all information of the message.

Here are codec parameters and their usage:

· Use2ndPalette – This parameter appears if the second palette is used in an iSKETCH message. Note that the second palette can only appear in an iSKETCH message whose color mode is 6- or 8-bit color. For 1-bit black and white, and 2-bit greyscale, the second palette will not be used, and the Use2ndPalette flag will not appear.

· ColorUsed – If the second palette is used, this is the number of colors in the iSKETCH message.

· 2ndPalette – This is the colormap for the second palette. The size of each color in 2ndPalette is same as number of bits for the color mode, which is 6 or 8 bits.

· ObjIndexInBits – This is the number of bits necessary to encode the object index. Since only display group objects and repeat objects will use the object index, ObjIndexInBits is determined by the maximum object index used in these two objects in the iSKETCH message.

· MaxXInBits, MaxYInBits – These are the numbers of bits necessary to encode absolute (not relative) X or Y coordinates. The coordinates of the centers of rectangles and ellipses, flood fill points, and the center and translation of display group object are also considered when calculating MaxXInBits and MaxYInBits.

· OffsetXInBitsLevel1, OffsetYInBitsLevel1 – These are the numbers of bits needed to encode relative X and relative Y coordinates of points after the first, absolute one. These are the level 1 bitfield width numbers which are smaller than level 2.

The encoder will determine which level (width) will be used for each poly-object, rectangle and ellipse; and indicate its choice by emitting a two-bit field, indicating whether X and Y are level-1-width, or level-2-width.

· OffsetXInBitsLevel2, OffsetYInBitsLevel2 – These are the number of bits needed to encode the relative X and Y coordinates of points after the first, absolute one. These are the level 2 bits numbers.

· NumPointsInBits – This is the number of bits necessary to encode the number of points in poly-objects.

· MaxScaleXYInBits – This is the number of bits needed to encode the Scale_X and Scale_Y elements of the display group object.

Codec Parameters Data Format

<codec parameters>::=

[<2ndPalette>]<ObjIndexInBits>

<MaxXInBits><MaxYInBits>

<OffsetXInBitsLevel1><OffsetYInBitsLevel1>

<OffsetXInBitsLevel2><OffsetYInBitsLevel2>

<NumPointsInBits><MaxScaleXYInBits>

<2ndPalette>::=<Use2ndPalette>[<NumberUsed>{<Color>}]

<Use2ndPalette>::=’unsigned_1_bit_integer’

; 0 means second palette will not be used for this iSKETCH message

; 1 means second palette will be used. Number of color used and second palette will follow.

<NumberUsed>::=’unsigned_8_bit_integer’

; number of color actually used in the iSKETCH message

<Color>::=’unsigned_6 or 8_bit_integer’

; color in the second palette. 6 or 8 bits for each color.

<ObjIndexInBits>::=’unsigned_4_bit_integer’

; number of bits to encode object index

< MaxXInBits >::=’unsigned_4_bit_integer’

; number of bits to encode X coordination

< MaxYInBits >::=’unsigned_4_bit_integer’

; number of bits to encode Y coordination

< OffsetXInBitsLevel1>::=’unsigned_4_bit_integer’

; number of bits to encode offset X, level 1

< OffsetYInBitsLevel1>::=’unsigned_4_bit_integer’

; number of bits to encode offset Y, level 1

< OffsetXInBitsLevel2>::=’unsigned_4_bit_integer’

; number of bits to encode offset X, level 2

< OffsetYInBitsLevel2>::=’unsigned_4_bit_integer’

; number of bits to encode offset Y, level 2

< NumPointsInBits >::=’unsigned_4_bit_integer’

; number of bits to encode offset Y, level 2

< MaxScaleXYInBits >::=’unsigned_4_bit_integer’

; number of bits to encode scale X and Y of display group object

Objects

Currently, there are 21 types of objects defined for iSKETCH message streams. They are:

· Audio

· Display_Group

· Ellipse

· Ellipse_Filled

· End_Group

· Flood_Fill_At

· Frame

· Group

· Group_No_Display

· Picture

· PolyBezCurve

· PolyBezCurve_Filled

· Polygon

· Polygon_Filled

· PolygonBezCurve

· PolyLine

· Rect_Filled

· Rectangle

· Repeat

· Set_Attribute

· Tagged_Text

Each object contains an Object type field
, and its own data.

Group Objects

A set of objects can be grouped together. A Display_Group object can be used to render a group of objects with a transform; e.g., translation, scaling, rotation, and attribute override (e.g., change all objects in a group to a specified color).

A group of objects starts with either a Group or a Group_No_Display object, which is followed by a list of the objects in the group, and ends with an End_Group object. The Display_Group object uses the object index of the Group or Group_No_Display object to indicate which group will be displayed.

Repeat Objects

When the Encoder sees a set of objects that are identical to a previous set of objects, it replaces the latter set of objects with a Repeat object, so that encoded bit stream size will be minimized. A Repeat object contains the StartObjectId and NumberOfObjects. When the Decoder sees a repeat object, it will replace the Repeat object with the set of objects that the Repeat object represents.

Note:
When calculating the object index of an object that follows a Repeat object, we should not count the Repeat object just as one object. Rather, we should count the Repeat object as the number of objects it represents. In other words, the index of objects after a repeat object will be unchanged, so that a Display_Group object, which uses a Group or Group_No_Display object’s index as the starting point of a group of object, doesn’t need to be changed after a repeat object replaces a number of objects.

One repeat object can replace a maximum of 4 original objects.

Object Data Formats

Poly-Object

<polyobject>::=<ObjectType><AttributeSet><Offset Bit Use><NumberOfPoints><First Point>{<Point>}

; Same data format for PolyLine, Polygon, FilledPolygon, PolyBezCurve, PolygonBezCurve, and FilledPolyBezCurve<ObjectType>::= ‘5-bit unsigned integer’<NumberOfPoints>::=’Unsigned NumPointsInBits -bit integer’ [See 0]

<AttributeSet>::=<NumberOfAttribute>[{<Attribute>}]

<NumberOfAttribute>::=’unsigned 3-bit integer’

; 0 means there is no attribute override. Thus, there will be no following Attribute

; Non-zero value means the number of attribute overrides followed by Attributes

<Attribute>::=<Attribute Type><Attribute Value>

<AttributeType>::=’unsigned 3-bit integer’

; 0 – PenColor

; 1 – Thickness

; 2 – FilledColor (currently not supported)

<Attribute Value>::=’unsigned 8-bit integer’

; if <AttributeType> is pen color, <Attribute Value> will be the color value, color index or second

; palette color index

; if <AttributeType> is thickness, <Attribute Value> will be the thickness value

<Offset Bit Use>::=<Offset X Use><Offset Y Use>

<Offset X Use>::=’unsigned 1-bit integer’

; 0 means offset X will use <OffsetXInBitsLevel1>, 1 means use <OffsetXInBitsLevel2>

<Offset Y Use>::=’unsigned 1-bit integer’

; 0 means offset Y will use <OffsetYInBitsLevel1>, 1 means use <OffsetYInBitsLevel2>

<First Point>::=<X><Y>

; first point of a poly-object

<X>::=’signed MaxXInBits-bit integer’
[See 0]

<Y>::=’signed MaxXInBits-bit integer’
[See 0]

<Point>::=<Offset X><Offset Y>

; points after first one

<Offset X>::=’signed OffsetXInBitsLevel1 or OffsetXInBitsLevel2-bit integer’
[See 0]

<Offset Y>::=’signed OffsetYInBitsLevel1 or OffsetYInBitsLevel2-bit integer’
[See 0]

Ellipse/Ellipse_Filled

<Ellipse>::=<ObjectType><AttributeSet><Offset Bit Use><Point (Centre)><Width><Height><Angle>

<Point (Centre)>::= <First Point>

; the center of ellipse

<Width>::=’unsigned OffsetXInBitsLevel1 or OffsetXInBitsLevel2-bit integer’
[See 0]

; the width of the ellipse

<Height>::=<Same As Width flag>[<HeightValue>]

<Same As Width flag>::=’unsigned 1-bit integer’

; 0 means the height is same as width, height will not be encoded

; 1 means height follows

<HeightValue>::=’unsigned OffsetYInBitsLevel1 or OffsetYInBitsLevel2-bit integer’
[See 0]

; the height of the ellipse

<Angle>::=<AngleUseDefault>[<Angle Value>]

<AngleUseDefault>::=’unsigned 1-bit integer’

; 0 means angle will use default value which is 0

; 1 means angle follows

<Angle Value>::=’signed 8-bit integer’

; Theta value (-128 to 127 to represent –180 to 180 degrees
)

Rectangle/Rectangle_Filled

<Rectangle>::=<ObjectType><AttributeSet><Offset Bit Use><Point (Centre)><Width><Height><Angle>

FloodFill

<FloodFill>::=<ObjectType><Filled Color><Seed Location>

<Filled Color>::=’unsigned N-bit integer’

; if second palette is not used, <Filled Color> is the real color or color index.

;

N = 1,2,8,6 for color mode 1-bit black and white, 2-bit greyscale,

;

8-bit W3C palette and 6-bit RGB color

; if second palette is used, <Filled Color> is the second color index,

;

N = number of bits to represent number of colors used in the

;

iSKETCH message as a unsigned value.

<Seed Location>::= <First Point>

; location of the seed.

TaggedText

<TaggedText>::=<StringTag><TextEncoding>{<Char>}

<StringTag>::=’unsigned 3-bit integer’

; There are 7 types of StringTags: None, Subject, Author, Body, Signature, Chat, and URL
<TextEncoding>::=<header_text_encode_format><Char>::=’unsigned 8 or 16-bit integer’

; characters of string, should end with 0x00 0x0000

Group

<Group>::=<ObjectType><AttributeSet>

; Group default attribute

Group_No_Display

<Group_No_Display>::=<ObjectType><AttributeSet>End_Group

<End_Group>::=<ObjectType
>

DisplayGroup

<DisplayGroup>::=<ObjectType
><GroupObjectIndex><Transform><OverrideAttributeSet>

<GroupObjectIndex>::=’unsigned ObjIndexInBits-bit integer’ [See 0]

; object index of a Group or Group_No_Display object

<Transform>::=<Angle><TranslateX><TranslateY><ScaleX><ScaleY><CX><CY>

<Angle>::=<AngleUseDefault>[<Angle Value>]

<AngleUseDefault>::=’unsigned 1-bit integer’

; 0 means angle will use default value which is 0

; 1 means angle value will follow

<Angle Value>::=’Signed 8-bit integer’

; theta value (256 levels of angle, range: -128-127)

<TranslateX>::=<TranslateXUseDefault>[<TranslateX Value>]

<TranslateXUseDefault>::=’unsigned 1-bit integer’

; 0 means translate x will use default value which is 0

; 1 means translate x value will follow

<TranslateX Value>::=<X>

<TranslateY>::=<TranslateYUseDefault>[<TranslateY Value>]

<TranslateYUseDefault>::=’unsigned 1-bit integer’

; 0 means translate x will use default value which is 0

; 1 means translate y value will follow

<TranslateY Value>::=<Y>

<ScaleX>::=<ScaleXUseDefault>[<ScaleX value>]

<ScaleXUseDefault>::=’unsigned 1-bit integer’

; 0 means scale x will use default value which is 256

; 1 means scale x value will follow

<ScaleX value>::=’signed MaxScaleXYInBits-bit integer’ [See 0]

<ScaleY>::=<ScaleYUseDefault>[<ScaleY value>]

<ScaleYUseDefault>::=’unsigned 1-bit integer’

; 0 means scale y will use default value which is same as scale x

; 1 means scale y value will follow

<ScaleY value>::=’signed MaxScaleXYInBits-bit integer’ [See 0]

<CX>::=<CXUseDefault>[<CX Value>]

; rotation and scale center (X)

<CXUseDefault>::=’unsigned 1-bit integer’

; 0 means center x will use default value which is 0

; 1 means center x value will follow

<CX Value>::=<X>

<CY>::=<CYUseDefault>[<CY Value>]

; rotation and scale center (Y)

<CYUseDefault>::=’unsigned 1-bit integer’

; 0 means center y will use default value which is 0

; 1 means center y value will follow

<CY Value>::=<Y>

<OverrideAttributeSet>::=<AttributeSet>

; override attributesFrame

<Frame>::=<ObjectType
><KeepLastFrameContentFlag><HasFilledColorFlag>[<Filled Color>]

<KeepLastFrameContentFlag
>::=’unsigned 1-bit integer’

; value 0 – Do not keep last frame content.

; value 1 – Keep last frame content.

<HasFilledColorFlag>::=’unsigned 1-bit integer’

; value 0 – no filled color

; value 1 – has filled color

Repeat Object

<Repeat>::=<ObjectType
><StartObjectID><NumberOfObject>

<StartObjectID>::=’unsigned ObjIndexInBits-bit integer’

; beginning object index

<NumberOfObject>::=’unsigned 2-bit integer’

; maximum 4 objects. 0 - 1 object, 1 – 2 objects, 2 – 3 objects, 3 – 4 objects

Picture Object

<Picture>::=<ObjectType><PictureType><color_mode>

<PictureXDim><PictureYDim>

<DisplayStartX><DisplayStartY>

<DisplayXDim><DisplayYDim>

< PictureViewportStartX>< PictureViewportStartY>

< PictureViewportXDim>< PictureViewportYDim>

<PictureSize>{<Picture Buffer>}

<PictureType>::=’unsigned 2-bit integer’

; currently two types of picture. i.e. BMP and WBMP, are defined

<PictureXDim>::=’unsigned 16-bit integer’

; width of picture in pixels <PictureYDim>::=’unsigned 16-bit integer’

; height of picture in pixels <DisplayStartX>::=<DisplayStartXUseDefault>[<DisplayStartX value>]

<DisplayStartXUseDefault>::=’unsigned 1-bit integer’

; 0 means display start x use default value which is 0

; 1 means display start x value will follow

<DisplayStartX value>::=’signed 16-bit integer’

; X coordinate of top left corner

<DisplayStartY>::=<DisplayStartYUseDefault>[<DisplayStartY value>]

<DisplayStartYUseDefault>::=’unsigned 1-bit integer’

; 0 means display start y use default value which is 0

; 1 means display start y value will follow

<DisplayStartY value>::=’signed 16-bit integer’

; Y coordinate of top left corner

<DisplayXDim>::=<DisplayXDimUseDefault>[<DisplayXDim value>]

<DisplayXDimUseDefault>::=’unsigned 1-bit integer’

; 0 means x dimension of displayed picture use default value which is <PictureXDim>

; 1 means x dimension value of displayed picture will follow

<DisplayXDim value>::=’signed 16-bit integer’

; x dimension of displayed picture

<DisplayYDim>::=<DisplayYDimUseDefault>[<DisplayYDim value>]

<DisplayYDimUseDefault>::=’unsigned 1-bit integer’

; 0 means y dimension of displayed picture use default value which is <PictureYDim>

; 1 means y dimension value of displayed picture will follow

<DisplayYDim value>::=’signed 16-bit integer’

; y dimension of displayed picture

<PictureViewportStartX>::=<PictureViewportStartXUseDefault>[<PictureViewportStartX value>]

<PictureViewportStartXUseDefault>::=’unsigned 1-bit integer’

; 0 means picture view port start x use default value which is 0

; 1 means picture view port start x value will follow

<PictureViewportStartX value>::=’signed 16-bit integer’

; X coordinate of top left corner of picture’s view port

<PictureViewportStartY>::=<PictureViewportStartYUseDefault>[<PictureViewportStartY value>]

<PictureViewportStartYUseDefault>::=’unsigned 1-bit integer’

; 0 means picture view port start y use default value which is 0

; 1 means picture view port start y value will follow

<PictureViewportStartY value>::=’signed 16-bit integer’

; Y coordinate of top left corner of picture’s view port

<PictureViewportXDim>::=<PictureViewportXDimUseDefault>[<PictureViewportXDim value>]

<PictureViewportXUseDefault>::=’unsigned 1-bit integer’

; 0 means x dimension of picture’s viewport use default value which is <PictureXDim>

; 1 means x dimension value of picture’s view port will follow

<PictureViewportXDim value>::=’signed 16-bit integer’

; x dimension of picture’s view port

<PictureViewportYDim>::=<PictureViewportYDimUseDefault>[<PictureViewportYDim value>]

<PictureViewportYUseDefault>::=’unsigned 1-bit integer’

; 0 means y dimension of picture’s viewport use default value which is <PictureYDim>

; 1 means y dimension value of picture’s view port will follow

<PictureViewportYDim value>::=’signed 16-bit integer’

; y dimension of picture’s view port

<PictureSize>::=’unsigned, 32-bit integer’

; picture size in bytes

<Picture Buffer>::=’unsigned, 8-bit integer’

; picture data

Audio Object

<Audio>::=<ObjectType><AudioType><NumberOfSamples><SampleRate><Channels><BitsPerSample><AudioSize>{<Audio Buffer>}

<AudioType>::=’unsigned 2-bit integer’

; currently two types of audio including wave and imelody are defined.

<NumberOfSamples>::=’unsigned 32-bit integer’

; number of samples in the audio data

<SampleRate>::=’unsigned 16-bit integer’

; in HZ

<Channels>::=<ChannelsUseDefault>[<Channels Value>]

<ChannelsUseDefault>::=’unsigned 1-bit integer’

; 0 means channels will use default value which is 1

; 1 means channels value will follow

<Channels Value>::=’unsigned 3-bit integer’

; Maximum 7 channels

<BitsPerSample>::=’unsigned 8-bit integer’

; Number of bits per sample per channel

<AudioSize>::=’unsigned 32-bit integer’

; data size in bytes

<Audio Buffer>::=’unsigned 8-bit integer’

; audio data: channel_1, channel_2, channel_3, …etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'PAGE: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'PAGE: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'PAGE: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'PAGE: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'PAGE: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'PAGE: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'PAGE: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'PAGE: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'PAGE: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'PAGE: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'PAGE: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'PAGE: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'PAGE: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'PAGE: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'PAGE: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'PAGE: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'PAGE: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'PAGE: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'PAGE: '#'�'" �� This is an example of pop-up text.

�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��?

�PAGE \# "'Page: '#'�'" ��Presumably in all objects?

�PAGE \# "'Page: '#'�'" ��Presumably in all objects?

�PAGE \# "'Page: '#'�'" ��Presumably in all objects?

�PAGE \# "'Page: '#'�'" ��What is this for?

�PAGE \# "'Page: '#'�'" ��Presumably in all objects?

_962624703

_962624721

_1052858959.doc

Control Byte

Reference

 Data Length

Positioning

 Information

Extended Object Data

1

2,3

4

5

6,7

Type

Identifier

Extended Object Header Information

Extended Object Data

Octet Number

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Extended Object Header

Extended Object Data

UDHL

Concatenation Info

IEI

E.O.*

IEIDL

Continuation of Extended Object Data

TPDU 2

TPDU 1

8.....n

* E.O. means Extended Object

_962624667

